Estimate nucleotide diversity (pi) at each locus, accounting for missing values. This uses the formula: c_0 * c_1 / (n * (n-1) / 2)
Usage
loci_pi(.x, .col = "genotypes", n_cores, block_size, type, ...)
# S3 method for class 'tbl_df'
loci_pi(
.x,
.col = "genotypes",
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1),
...
)
# S3 method for class 'vctrs_bigSNP'
loci_pi(
.x,
.col = "genotypes",
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(length(.x), 1),
...
)
# S3 method for class 'grouped_df'
loci_pi(
.x,
.col = "genotypes",
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1),
type = c("tidy", "list", "matrix"),
...
)
Arguments
- .x
a vector of class
vctrs_bigSNP
(usually thegenotypes
column of agen_tibble
object), or agen_tibble
.- .col
the column to be used when a tibble (or grouped tibble is passed directly to the function). This defaults to "genotypes" and can only take that value. There is no need for the user to set it, but it is included to resolve certain tidyselect operations.
- n_cores
number of cores to be used, it defaults to
bigstatsr::nb_cores()
- block_size
maximum number of loci read at once.
- type
type of object to return, if using grouped method. One of "tidy", "list", or "matrix". Default is "tidy".
- ...
other arguments passed to specific methods, currently unused.
Examples
example_gt <- load_example_gt("grouped_gen_tbl")
# For pi
example_gt %>% loci_pi()
#> # A tibble: 18 × 3
#> loci group value
#> <chr> <chr> <dbl>
#> 1 rs1 pop1 0.533
#> 2 rs1 pop2 0.5
#> 3 rs1 pop3 0
#> 4 rs2 pop1 0.533
#> 5 rs2 pop2 0
#> 6 rs2 pop3 0.5
#> 7 rs3 pop1 0
#> 8 rs3 pop2 0
#> 9 rs3 pop3 0.5
#> 10 rs4 pop1 0.667
#> 11 rs4 pop2 0.5
#> 12 rs4 pop3 0
#> 13 rs5 pop1 0.6
#> 14 rs5 pop2 0.5
#> 15 rs5 pop3 1
#> 16 rs6 pop1 0.333
#> 17 rs6 pop2 0.5
#> 18 rs6 pop3 1
# For pi per locus per population
example_gt %>%
group_by(population) %>%
loci_pi()
#> # A tibble: 18 × 3
#> loci group value
#> <chr> <chr> <dbl>
#> 1 rs1 pop1 0.533
#> 2 rs1 pop2 0.5
#> 3 rs1 pop3 0
#> 4 rs2 pop1 0.533
#> 5 rs2 pop2 0
#> 6 rs2 pop3 0.5
#> 7 rs3 pop1 0
#> 8 rs3 pop2 0
#> 9 rs3 pop3 0.5
#> 10 rs4 pop1 0.667
#> 11 rs4 pop2 0.5
#> 12 rs4 pop3 0
#> 13 rs5 pop1 0.6
#> 14 rs5 pop2 0.5
#> 15 rs5 pop3 1
#> 16 rs6 pop1 0.333
#> 17 rs6 pop2 0.5
#> 18 rs6 pop3 1
# alternatively, return a list of populations with their pi
example_gt %>%
group_by(population) %>%
loci_pi(type = "list")
#> [[1]]
#> [1] 0.5333333 0.5333333 0.0000000 0.6666667 0.6000000 0.3333333
#>
#> [[2]]
#> [1] 0.5 0.0 0.0 0.5 0.5 0.5
#>
#> [[3]]
#> [1] 0.0 0.5 0.5 0.0 1.0 1.0
#>
# or a matrix with populations in columns and loci in rows
example_gt %>%
group_by(population) %>%
loci_pi(type = "matrix")
#> pop1 pop2 pop3
#> rs1 0.5333333 0.5 0.0
#> rs2 0.5333333 0.0 0.5
#> rs3 0.0000000 0.0 0.5
#> rs4 0.6666667 0.5 0.0
#> rs5 0.6000000 0.5 1.0
#> rs6 0.3333333 0.5 1.0
# or within reframe (not recommended, as it much less efficient
# than using it directly as shown above)
example_gt %>%
group_by(population) %>%
reframe(pi = loci_pi(genotypes))
#> # A tibble: 18 × 2
#> population pi
#> <chr> <dbl>
#> 1 pop1 0.533
#> 2 pop1 0.533
#> 3 pop1 0
#> 4 pop1 0.667
#> 5 pop1 0.6
#> 6 pop1 0.333
#> 7 pop2 0.5
#> 8 pop2 0
#> 9 pop2 0
#> 10 pop2 0.5
#> 11 pop2 0.5
#> 12 pop2 0.5
#> 13 pop3 0
#> 14 pop3 0.5
#> 15 pop3 0.5
#> 16 pop3 0
#> 17 pop3 1
#> 18 pop3 1