Skip to contents

DALEX is designed to explore and explain the behaviour of Machine Learning methods. This function creates a DALEX explainer (see DALEX::explain()), which can then be queried by multiple function to create explanations of the model.

Usage

explain_tidysdm(
  model,
  data,
  y,
  predict_function,
  predict_function_target_column,
  residual_function,
  ...,
  label,
  verbose,
  precalculate,
  colorize,
  model_info,
  type,
  by_workflow
)

# Default S3 method
explain_tidysdm(
  model,
  data = NULL,
  y = NULL,
  predict_function = NULL,
  predict_function_target_column = NULL,
  residual_function = NULL,
  ...,
  label = NULL,
  verbose = TRUE,
  precalculate = TRUE,
  colorize = !isTRUE(getOption("knitr.in.progress")),
  model_info = NULL,
  type = "classification",
  by_workflow = FALSE
)

# S3 method for class 'simple_ensemble'
explain_tidysdm(
  model,
  data = NULL,
  y = NULL,
  predict_function = NULL,
  predict_function_target_column = NULL,
  residual_function = NULL,
  ...,
  label = NULL,
  verbose = TRUE,
  precalculate = TRUE,
  colorize = !isTRUE(getOption("knitr.in.progress")),
  model_info = NULL,
  type = "classification",
  by_workflow = FALSE
)

# S3 method for class 'repeat_ensemble'
explain_tidysdm(
  model,
  data = NULL,
  y = NULL,
  predict_function = NULL,
  predict_function_target_column = NULL,
  residual_function = NULL,
  ...,
  label = NULL,
  verbose = TRUE,
  precalculate = TRUE,
  colorize = !isTRUE(getOption("knitr.in.progress")),
  model_info = NULL,
  type = "classification",
  by_workflow = FALSE
)

Arguments

model

object - a model to be explained

data

data.frame or matrix - data which will be used to calculate the explanations. If not provided, then it will be extracted from the model. Data should be passed without a target column (this shall be provided as the y argument). NOTE: If the target variable is present in the data, some of the functionalities may not work properly.

y

numeric vector with outputs/scores. If provided, then it shall have the same size as data

predict_function

function that takes two arguments: model and new data and returns a numeric vector with predictions. By default it is yhat.

predict_function_target_column

Character or numeric containing either column name or column number in the model prediction object of the class that should be considered as positive (i.e. the class that is associated with probability 1). If NULL, the second column of the output will be taken for binary classification. For a multiclass classification setting, that parameter cause switch to binary classification mode with one vs others probabilities.

residual_function

function that takes four arguments: model, data, target vector y and predict function (optionally). It should return a numeric vector with model residuals for given data. If not provided, response residuals (\(y-\hat{y}\)) are calculated. By default it is residual_function_default.

...

other parameters

label

character - the name of the model. By default it's extracted from the 'class' attribute of the model

verbose

logical. If TRUE (default) then diagnostic messages will be printed

precalculate

logical. If TRUE (default) then predicted_values and residual are calculated when explainer is created. This will happen also if verbose is TRUE. Set both verbose and precalculate to FALSE to omit calculations.

colorize

logical. If TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console. Now by default it is FALSE while knitting and TRUE otherwise.

model_info

a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on it's own.

type

type of a model, either classification or regression. If not specified then type will be extracted from model_info.

by_workflow

boolean determining whether a list of explainer, one per model, should be returned instead of a single explainer for the ensemble

Value

explainer object DALEX::explain ready to work with DALEX

Examples

# \donttest{
# using the whole ensemble
lacerta_explainer <- explain_tidysdm(tidysdm::lacerta_ensemble)
#> Preparation of a new explainer is initiated
#>   -> model label       :  data.frame  (  default  )
#>   -> data              :  444  rows  4  cols 
#>   -> data              :  tibble converted into a data.frame 
#>   -> target variable   :  444  values 
#>   -> predict function  :  predict_function 
#>   -> predicted values  :  No value for predict function target column. (  default  )
#>   -> model_info        :  package tidysdm , ver. 0.9.6.9004 , task classification (  default  ) 
#>   -> model_info        :  type set to  classification 
#>   -> predicted values  :  numerical, min =  0.01490969 , mean =  0.2861937 , max =  0.7169324  
#>   -> residual function :  difference between y and yhat (  default  )
#>   -> residuals         :  numerical, min =  -0.6465921 , mean =  -0.03619367 , max =  0.7891973  
#>   A new explainer has been created!  
# by workflow
explainer_list <- explain_tidysdm(tidysdm::lacerta_ensemble,
  by_workflow = TRUE
)
#> Preparation of a new explainer is initiated
#>   -> model label       :  default_glm 
#>   -> data              :  444  rows  4  cols 
#>   -> data              :  tibble converted into a data.frame 
#>   -> target variable   :  444  values 
#>   -> predict function  :  yhat.workflow  will be used (  default  )
#>   -> predicted values  :  No value for predict function target column. (  default  )
#>   -> model_info        :  package tidymodels , ver. 1.2.0 , task classification (  default  ) 
#>   -> model_info        :  type set to  classification 
#>   -> predicted values  :  numerical, min =  0.2280177 , mean =  0.75 , max =  0.9854359  
#>   -> residual function :  difference between y and yhat (  default  )
#>   -> residuals         :  numerical, min =  -0.9096205 , mean =  5.395921e-12 , max =  0.7719823  
#>   A new explainer has been created!  
#> Preparation of a new explainer is initiated
#>   -> model label       :  default_rf 
#>   -> data              :  444  rows  4  cols 
#>   -> data              :  tibble converted into a data.frame 
#>   -> target variable   :  444  values 
#>   -> predict function  :  yhat.workflow  will be used (  default  )
#>   -> predicted values  :  No value for predict function target column. (  default  )
#>   -> model_info        :  package tidymodels , ver. 1.2.0 , task classification (  default  ) 
#>   -> model_info        :  type set to  classification 
#>   -> predicted values  :  numerical, min =  0.1315421 , mean =  0.7480648 , max =  1  
#>   -> residual function :  difference between y and yhat (  default  )
#>   -> residuals         :  numerical, min =  -0.6878921 , mean =  0.001935171 , max =  0.5870619  
#>   A new explainer has been created!  
#> Preparation of a new explainer is initiated
#>   -> model label       :  default_gbm 
#>   -> data              :  444  rows  4  cols 
#>   -> data              :  tibble converted into a data.frame 
#>   -> target variable   :  444  values 
#>   -> predict function  :  yhat.workflow  will be used (  default  )
#>   -> predicted values  :  No value for predict function target column. (  default  )
#>   -> model_info        :  package tidymodels , ver. 1.2.0 , task classification (  default  ) 
#>   -> model_info        :  type set to  classification 
#>   -> predicted values  :  numerical, min =  0.3390188 , mean =  0.7314788 , max =  0.9632964  
#>   -> residual function :  difference between y and yhat (  default  )
#>   -> residuals         :  numerical, min =  -0.9268645 , mean =  0.01852121 , max =  0.6280424  
#>   A new explainer has been created!  
#> Preparation of a new explainer is initiated
#>   -> model label       :  default_maxent 
#>   -> data              :  444  rows  4  cols 
#>   -> data              :  tibble converted into a data.frame 
#>   -> target variable   :  444  values 
#>   -> predict function  :  yhat.workflow  will be used (  default  )
#>   -> predicted values  :  No value for predict function target column. (  default  )
#>   -> model_info        :  package tidymodels , ver. 1.2.0 , task classification (  default  ) 
#>   -> model_info        :  type set to  classification 
#>   -> predicted values  :  numerical, min =  0.1095764 , mean =  0.6256817 , max =  0.9960248  
#>   -> residual function :  difference between y and yhat (  default  )
#>   -> residuals         :  numerical, min =  -0.8207859 , mean =  0.1243183 , max =  0.8904236  
#>   A new explainer has been created!  
# }