Note that Tajima's D estimates from data that have been filtered or ascertained can be difficult to interpret. This function should ideally be used on sequence data prior to filtering.
Usage
pop_tajimas_d(.x, n_cores, block_size, ...)
# S3 method for class 'tbl_df'
pop_tajimas_d(
.x,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1),
...
)
# S3 method for class 'vctrs_bigSNP'
pop_tajimas_d(
.x,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(length(.x), 1),
...
)
# S3 method for class 'grouped_df'
pop_tajimas_d(
.x,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1),
...
)
Arguments
- .x
a vector of class
vctrs_bigSNP
(usually thegenotypes
column of agen_tibble
object), or agen_tibble
.- n_cores
number of cores to be used, it defaults to
bigstatsr::nb_cores()
- block_size
maximum number of loci read at once.
- ...
other arguments passed to specific methods, currently unused.
Value
A single numeric value (Tajima's D D) for the whole data set, NA
when the statistic is not defined. For grouped data a list of Tajima's D D
values (one per group) is returned.
Examples
example_gt <- example_gt("grouped_gen_tbl")
# Compute Tajima's D
example_gt %>% pop_tajimas_d()
#> [[1]]
#> [1] 1.218829
#>
#> [[2]]
#> [1] -0.780123
#>
#> [[3]]
#> [1] 14.90782
#>